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Crystal Structure of Cupric Di-L-ornithinate Dichloride Dihydrate

By SANKARANANDA GUHA* AND N. N. SAHA
Saha Institute of Nuclear Physics, Calcutta-9, India

(Received 16 September 1969)

The crystal structure of cupric di-L-ornithinate dichloride dihydrate,
Cu[HN;(CH2);CH(NH,)COO].Cl.2H-0,
has been determined using three-dimensional intensity data. The crystal data are a=5-18, 6=15-57,

c=11-90 A

, B=93:3°, space group P2;/c; there are two molecules in the cell. The structure has been

refined by the full-matrix least-squares method. The final R is 0-087. The molecule shows a distorted
octahedral geometry around copper, with two pairs of oxygen and nitrogen atoms forming an approx-
imately square planar coordination, while the two chloride ions are at the apical positions. All the
hydrogen atoms available for hydrogen bond formation are satisfied.

Introduction

The function of amino acid rL-ornithine in the living
system is very important. In the present paper the
crystal and molecular structure of a copper complex of
L-ornithine chloride, namely cupric diornithinate di-
chloride dihydrate having the chemical formula
Cu[NH;(CH,);CH(NH,)COO},Cl,.2H,0 is reported.

Experimental

Cupric diornithinate dichloride (Taurins, 1950) crys-
tallizes as thin plates, elongated along the a axis, when
an aqueous solution is evaporated slowly. The crystal
is deep blue in colour and is stable at room temperature.
It is also unaffected by humidity.

Unit-cell dimensions and space group

Rotation and Weissenberg photographs taken about
the needle axis showed that the crystal belongs to the
monoclinic system. The unit-cell dimensions are
a=518, b=1557, ¢=11-90 A, f=93-3°. The only
systematic absences were for 0k0 with & odd and A0/
with / odd. But, a few of the hO/ reflexions with / odd
had observable intensities. These forbidden spots were
in fact the Renninger (1937) reflexions of the incident
beam by two sets of strong planes, as found from a
study of the reflecting conditions of the reciprocal
lattice (Table 1). The space group therefore is P2,/c.
The density of the crystal determined by the flotation
method was found to be 1-501 g.cm=3, while the cal-
culated value for two formula units of

CuC1204N4C10H24 2 Hzo
in the unit cell was 1:506 g.cm~3. The molecule was
therefore centrosymmetric with the copper atom at the
origin.

Intensity measurement

Data up to the fourth layer along the needle axis
a were collected from Weissenberg photographs using
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the equi-inclination technique with Cu Ko radiation.
The intensities were estimated visually with standard
calibrated strips. The intensity value assigned to the
unobserved reflexions, i.e. reflexions with intensities
too weak to be observed, was one half the minimum
value that it had been possible to observe. The inten-
sity values for different layers were corrected for spot
size (Phillips, 1954, 1956) and for Lorentz and polar-
ization factors. As the crystal used was very thin, about
0-03 mm on each side of the cross section, no absorp-
tion correction was necessary for the data collected
along the needle axis, the linear absorption coefficient
being 45-0 cm~1,

The crystals being very thin there was a lot of
practical difficulty in cutting them to proper shape and
size for taking photographs about other axes. A zero
layer line photograph was, however, taken about the
b axis with the idea of putting the intensities on the
same relative scale by a cross-layer correlation method,
but this was not successful, owing to the irregular
absorption of the crystal used. The intensities of each
of the five layer line photographs about the a axis were
then separately placed on an absolute scale by Wil-
son’s statistical method.

Structure determination

A three-dimensional point atom sharpened Patterson
synthesis using all the reflexions was then computed.
The Cu—Cu, Cu-Cl and CI-Cl interaction vectors were
identified from this synthesis. The structure factors
were calculated for all the reflexions with the coordi-
nates of copper and chlorine atoms obtained. The
disagreement factor R was 0-45.

A three-dimensional Fourier synthesis was then cal-
culated using the signs of the copper and chlorine
atoms. About 65% of the reflexions to which signs
could be assigned confidently were used. A spoke and
bead model was constructed with the electron density
peaks obtained from this synthesis. This model helped
in deriving the structure completely. The proposed
structure was satisfactory from stereochemical con-
siderations. The R value for all the atoms was 0-26.
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Refinement of the structure

The three-dimensional refinement of the structure was
then undertaken by the method of least-squares. To
start with, three cycles of full-matrix least-squares
refinement using isotropic temperature factors was made
on a 32 K core memory CDC 3600 computer at the
Tata Institute of Fundamental Research, Bombay. The
program used was the modified version of the ORFLS
program of Busing, Martin & Levy (1962). The func-
tion minimized in the least-squares calculation was
the sum of the squares of the differences between the
observed and calculated structure factors, i.e. w(Fo—
F¢)?, where the summation was over all reflexions and
w the weighting factor. A plot of w(4|F|)? as a function
of (sin /1) and |F,| did not suggest any obvious
weighting scheme. Each reflexion was, therefore, given
a unit weight. The unobserved reflexions, however,
were excluded from initial stages of refinement. The
scale factors for the five layers were also subjected to
refinement so that the error due to interlayer scaling
might be minimized. The scattering factors for C, N,
O, Cl- and Cu atoms were taken from International
Tables for X-ray Crystallography (1960). The R value
decreased to 0-141. Next, two more cycles of full-
matrix least-squares refinement using anisotropic tem-
perature factors were carried out and R was found to
decrease to 0-095.

A three-dimensional difference Fourier synthesis was
then calculated with all the reflexions. This synthesis

CUPRIC DI-L-ORNITHINATE DICHLORIDE DIHYDRATE

did not show any peak with density exceeding +0-3
e.A-3. The hydrogen atoms, however, could not be
located unequivocally.

After two more cycles of full-matrix anisotropic
least-squares refinement the R value for 1487 observed
reflexions converged to 0-0869 and 0-0908 when 106
unobserved reflexions were included. The shifts in the
parameters in the final cycle were much less than
their estimated standard deviations.

The positional and thermal parameters of the atoms
together with their estimated standard deviations are
given in Tables 2(a) and (b) respectively. The observed

-and calculated structure factors are given in Table 3.

The composite drawing of the final Fourier synthesis
is shown in Fig. 1.

Discussion of the structure

Intramolecular characteristics

The dimensions of the molecule are shown in Fig. 2.
The molecular packing viewed along ¢ and a axes is
shown in Figs. 3 and 4 respectively. The intramolecular
and intermolecular bond angles and bond distances
are given in Table 4 and 5 respectively.

The crystal structure of the copper ornithine com-
plex, Cu(r-orn),Cl,2H,0, is similar in many ways to
those of other Cu(II) complexes of amino acids whose
crystal structures have already been determined. The
a-amino nitrogen and a carboxyl oxygen in each of
the two centrosymmetrically related bidentate orni-

Table 1. Renninger reflexions
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Table 2(a). The positional parameters of the atoms and their

1

o
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Pairs of planes giving rise to the corresponding
forbidden reflexion

LR

;729.026;087.184%
93

0.

;051.354;,072.373

standard deviations

x/a o(x) ylb o(y) zfc a(z)

Cu 0-0000 0-0000 0-0000

Cl —0-2608 0-0021 A —0-3491 0-0020 A —0-4216 0-0019 A
o) 0-7678 0-0081 —0-3453 0-0075 0-0046 0-0065
N(2) 0-4700 0-0069 —0-3920 0-0067 —0-1888 0-0064
C(5) 0-2381 0-0105 —0-3351 0-0125 —0-1959 0-0113
C4) 0-3131 0-0110 —0-2416 0-0115 —0-2079 0-0112
Cc(@3) 0-0660 0-0120 —0-1882 0-0126 —0-2026 0-0130
C() 0-1146 0-0097 —0-0915 0-0100 —0-1943 0-0093
N(1) 0-2420 0-0060 —0:0732 0-0061 —0-0822 0-0060
0oQ2) —0-2401 0-0070 —0-0480 0-0064 —03132 0-0060
c() —0-1474 0-0087 —0-0472 0-0089 —0-2132 0-0094
o(1) —0-2277 0-0052 0-0020 0-0058 —0-1390 0:0052



Table 2(b). The anisotropic temperature factors of the atoms and their standard deviations
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thine ligands are linked to copper and form almost a
square planar configuration. The Cu(II)-N(I) and
SRR Cu(II)-O(I) distances have been found to be 1-992 +
0006 and 1976 +0-005 A, respectively, while the
average values for these distances, as compiled from

. SS8S38RERENEY similar other complexes (Freeman, 1967) are 2:00+
SEZ22SIZI8I88 0:005 and 1-98+0-012 A, respectively. The values for
él ? O| él C'|> C'|> °© <i|7 <'|D ¢| co the ligand-Cu-ligand angle in copper complexes of

different amino acids show that this angle in the co-
ordination square is very sensitive to environments.

— = AN = NN NN . . .
= g AmEnlzgaxgay This angle in Cu(L-pm);Clz.Z H,0 is 87-74 +0-23°,
£888388888888 There are two chloride ions bonded axially to the
SO SSSD

Cu(11) atom, the length of the bond being 2-891 + 0-002
A. This Cu-Cl bond makes an angle of 72-8° with the
plane of the coordination square, thus presenting the

BrIIANIRIEIR : :

nE5550C8 88538 picture of a @storted ctahedron. ‘
= o4 § 252838322 Although it was ex} .cted that owing to the central
| T 17111 metal atom forming the chelate ring the C(1)-O(1) and
C(1)-0(2) distances would be different, they were in
295283828 TeRe the present case found to be equal (1-257+0-011 A).
g § § 88=5238888 The carboxyl group in Cu(r-orn),Cl,2H,0 is approxi-
RD-S-0-0-0-0-0-0-0-0- 44 mately planar. The equation of the least-squares plane

00037
00003
00022
00013
00323
01409
00019
00457
00046

Ot =R — AN T 0D
=828333L53353 np —> O
eSS 8533 —a/2sin
S0 0000600004 b/4
SO SSSSS -

TACOR ARV NS
AN MmOV ANnAN 0
J8Sooocooooeee
INE=3-F=3=3-F-F-F-F-F-F-3=1
N0 0-0-0-0-0-0-0-0-04

SSoococoodo0S

(ﬁ

NN —NOnNANTATON +b/4
AT AN~ OATNOAAN T
“833838EIESSS
S S255533555853

Fig. 1. Composite three-dimensional final electron-density map
projected along ¢ axis. Contours are at intervals of 2 e.A-3
starting from 1 e.A-3 for C, N and O atoms and at intervals
of 4e,A-3 starting from 2e.A-3 for Cl- and Cu atoms,
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Table 3. The observed and calculated structure factors

Within each group the columns, reading from left to right, contain the values /, 10F, and 10F.. The unobserved reflexions are
not included.
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Table 3 (cont.)
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where x’, ', z' are coordinates in dngstroms referred
to a set of orthogonal axes given by x'=xsinp,
y'=y, zZ=z+xcos . The deviations of the atoms
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Fig.3. Molecular packing viewed along ¢ axis. The dashed
lines indicate hydrogen bonds.

C(1), C(2), O(1), O(2), N(1) and Cu from this plane
are +0-051, —0-083, —0-176, +0-090, —0-416 and
—0-472 A respectively.

None of the bond distances or angles in the ornithine
residue differs significantly from those of other metal
amino acid complexes (Freeman, 1967). Their values
do not differ significantly from those obtained in the
unchelated molecule L-ornithine.HCl (Chiba, Ueki,
Ashida, Sasada & Kakudo, 1967; Guha, Mazumdar
& Saha, 1969). The conformations of the chelated
amino acid and the hydrochloride, however, do differ.
For example, the carboxyl group in the hydrochloride
is much more planar and the deviations of N(1) from
Fig.2. Bond lengths and bond angles the plane is considerably greater.

o(w)
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Table 4. Intramolecular interatomic distances and angles

Bond distance

Cu—0(1) 1976 +0-005 A
Cu—N(1) 1992+ 0-006
Cu—Cl 2-891 +0-002
C(1)-0(1) 1257 +0-011
C(1)-0(2) 1257+ 0-011
C(1)-C(2) 1528 +0-013
C(2)-N(1) 1-481+0-011
C(2)-C(3) 1-529+0:016
C(3)-C(4) 1:531+0-017
C(4)-C(5) 1515+ 0-017
C(5)-N(2) 1491 +0-013

Bond angle
0O(1)-C(1)-0(2) 123-2+06°
O(1)-C(1)-C(2) 1199+ 0-8
0(2)-C(1)-C(2) 115:040-8
N(1)-C(2)-C(1) 112:9+0-7
C(3)-C(2)-C(1) 107-1+0-8
C(3)-C(2)-N(1) 108-1+0-8
C(4)-C(3)-C(2) 11374+ 1-0
C(5)-C(4)-C(3) 107:4+ 09
N(2)-C(5)-C(4) 111-5+09

Table 5. Intermolecular bond distances and bond angles hydrogen bonding

Donor-H- - - Acceptor Bond distance
N@1)—H- - -O(1)*1 3-097 +0-008 A
N@1)—H- - -Cl+2 3-344 + 0-006
NQ2)—H:- - -O(W) 2:792 +0-009
NQ)—H:- - -0O(2)#3 2-706 + 0-009
N(2)—H- - -Cl«l 3-248 +0-006
O(W)-H- - -Cl*2 3-157+0-008
O(W)-H---0(2)%2 2-733 4+ 0-009

Close nonbonded contact

N(2)---O(1)+3 2:860 +0-008 A

1 14x,
*2: 1+x,
*3: -X,

Intermolecular characteristics

Of the two amino groups in each ornithinate residue,
it is known that the terminal amino group is more
basic than the a-amino group. So, in the solid state
it is expected that the Cl- ion would be associated
with the terminal amino nitrogen through hydrogen
bond. In cupric diornithinate dichloride dihydrate both
the o-amino and the terminal amino groups form
hydrogen bonds with Cl- ion. It may, however, be
noted that the hydrogen bond with Cl- formed by the
terminal nitrogen (3-248 A) is stronger than that
formed by «-amino nitrogen (3-344 A).

The a-amino nitrogen and the terminal amino ni-
trogen atoms have altogether five hydrogen atoms
available for bond formation: two from a-amino N(1)
of the C(2)-N(1)H; group and three from the terminal
amino nitrogen N(2) of the C(5-N(2)*H; group.
The -N(1)H; group has the expected two close neigh-
bours but the C(5)-N(2)*H; group has four, all of
them being within the range of hydrogen bonding
distances. It may be noted that both the «- and
terminal-amino nitrogen atoms N(1) and N(2) should
assume tetrahedral configuration, i.e. the C-N...X
angles should not be far away from the tetrahedral
values. This condition is not satisfied by the angle
C(5)-N(2)---O(1)*3=150-4°. It is, therefore, con-
cluded that this site is not involved in hydrogen bond
formation.

Carbon-donor- - + Acceptor Bond angle
C(2)-N(1)- - -O(1)*1 103:4+0-5°
C(2)~N(1)- - - Cl*2 137:2+0'5
C(5)-N(2)---O(W) 107:4 +0-5
C(5)-N(2)- - -O(2)#3 100-4 +0-5
C(5)-N(2)- - -Cl*1 9504 0-5
C(5)-N(2)- - - O(1)#3 150-4+0-5°

y’ z
- % -Y 'k+ z
—3+y, —%-z

Fig.4. Molecular packing viewed along a axis. The dashed
lines indicate hydrogen bonds.
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An Investigation of the Crystal Structure of MnsGe; Using Single-Crystal Neutron
Time-of-Flight Techniques

By D.H.Day anD R. N.SINCLAIR
Atomic Energy Research Establishment, Harwell, Didcot, Berkshire, England

(Received 29 January 1970)

The Harwell electron linear accelerator has been used to provide a pulsed source of thermal neutrons.
The intensities of many diffraction peaks from a single crystal of MnsGes; were measured simultaneously
by a time of flight technique. The various corrections to this data are described and the set of structure
factors derived is compared with a calculated set. The time of flight technique using a pulsed white
beam of thermal neutrons provides structure factors at several wavelengths thus giving an immediate
indication of the magnitude of the extinction effect. For the majority of refiexions measured in this
experiment extinction effects cannot be neglected for measurements made at wavelengths greater than
0-5 A. After approximate correction for these effects optimum values for the two positional parameters

in the D83 structure are found.

Introduction

When determining the structure of a complex molecule
by diffraction techniques it is difficult to resolve suf-
ficient lines from a powder sample so one is normally
forced to use a single crystal. X-ray diffraction is the
quickest and cheapest method of structure factor de-
termination but in certain cases the distinct advantages
of neutron diffraction (Bacon, 1955) are indispensable.
However, intense neutron sources (reactors and others)
are expensive and it is important to make maximum
use of the available time. For this reason it is desirable
to improve the rates of data collection using existing
neutron sources and to be ready to use the next
generation of intense sources which is likely to consist
mainly of pulsed reactors (Brugger, 1968).

What we will call the conventional technique is
shown in Fig. 1(a). A monochromatic (mono-energetic)
beam of neutrons is selected from a well collimated
beam of thermal neutrons by Bragg reflexion from a
large single crystal and the small specimen crystal is
set so that each plane in turn reflects this beam on to a
detector. The measurement of the intensity of each
peak involves an (w, 26) scan over some few degrees.

In the time-of-flight technique (Buras, Mikke, Lebech
& Leciejewicz, 1965; Lowde, 1956) a pulsed white
beam of neutrons falls on the specimen and the dif-
fracted neutrons are analysed as a function of direction
and time of flight and hence wavelength [Fig. 1(b)].
Thus with a large enough array of detectors the inten-
sities of reflexions above some minimum wavelength
(and hence below some maximum Miller indices) can
be determined.

Comparisons are difficult to make but we have shown
(Day & Sinclair, 1968) that a one kilowatt pulsed
neutron source based on a rather low-powered electron
linear accelerator (linac) can give comparable results
to the conventional technique on a fairly high flux
(15 MW) reactor, and that the use of a chopped beam
on that reactor would show a considerable gain over the
conventional technique. When intense pulsed neutron
sources become available time of flight techniques
seem to be the only logical approach to achieving the
potential gain in rates of data acquisition.

However, there are obviously many questions to be
answered and many difficulties to be overcome before
the crystallographer can be expected to welcome these
techniques. This paper aims to show that many of these



